NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

REPORT 986

l
CIFLN
0%

THE REVERSIBILITY THEOREM FOR THIN AIRFOILS
IN SUBSONIC AND SUPERSONIC FLOW

By CLINTON E. BROWN

AN —
Q " REFERENCE TlLgRess
F |

CIION STAYCMENT K
App:oved tor public reiesase

Dirmoupon Urlimited vy

1950

w&w g},@u nment Frint nzOﬂ‘l , D. C./ Y y:-yéipth Mu\w
Igleeopypce i ing to' ‘cents

1 o .




Q

S Tah®

L

Dy
D,

D,

AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol o
Unit "\‘mt)-] Cvias Unit Abbreviation
| ion
N I

Length o o . ! MOECT . . e e U m foot (or mile) . ..______ ft (or mi)

Time__ ..o onn t seeond . ... ... s second (or hour)._._._. sec (or hr)

FOree. ccveeee F welght of | kifogram._____ kg weight of 1 pound__._. b

Power. - - —_-. P ! horsepower fmetrie) ..o _[--......_.| horsepower. _______ ... hp

3 v jkilometers per hour__ - oo kph miles per hour_o o ____. mph

Speed. .- meters per sceond. oo ___ mps feet per sceond.. ... fps

!
2. GENERAL SYMBOLS 2

Weight =mg p Kinematic viscosity
Standard acceleration of gravity=9.80665 m/s* p Density (mass per unit volume)

or 32.1740 {t/sec?

Mass ==
i

Moment

of inertin=mk2

{Indicate axis of

radius of gvration £ by proper subseript.)

Coeilicient of viscosity

Arca

Area of wing
Gap

Span

Chord

s
[

N

Aspeet ratio,

True ate sneed

. R
Dynamie pressure, 3 p¥

Lift, absolute cocflicient ' =-%,

Standard density of dry air, 0.12497 kg-m~*-s? at 15° C

and 760 mm; or 0.002378 1b-f1™* se¢?
Specific weight of “standard” air, 1.2255 kg/m® or
0.07651 Ib/cu ft L

3. AERODYNAMIC SYMBOLS

e absoluie coefficient 77, = =5
Drag, absoluic ¢ by

o} o dyeyor < PN S TINI Y, az
Profile drag. absolute cocilicient €7y 7S

Induend drag,

), I ey
Parasite drag,

.. »
absolute coefficient (' = -8
1 Py =S

‘L
o
D
1,
- D
absolute coellicient (V/,t—"—'q'-bi
D

.. 8
Cross-wind foree, absolute eaxflicient ﬁc:f_ﬁ

L2)
&

Angle of setting of wings (relative to thrust line)

Angle of stabilizer setting (relative to thrust
lim‘)

Resultant moment

Resultant angular velocity

Vi . N
Reynolds number, o where / is a linear dimen-

sion (e.g., for an airfoil of 1.0 ft chord, 100
mph, standard pressure at 15° C, the corre-
sponding Reynolds number is 935,400; or for
an airfoil of 1.0 m chord. 100 mps, the corre-
sponding Reynolds number is 6,865,000)

Angle of attack

Angle of downwash

Angle of attack, infinite aspect ratio

Angle of attack, induced

Angle of attack, absolute (measured from zero-
lift position)

Flight-path angle
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THE REVERSIBILITY THEOREM FOR THIN AIRFOILS IN SUBSONIC AND SUPERSONIC FLOW

By Crinxroyx E. Browxs

SUMMARY

A method introduced by Munle is extended to prove that the
lift-curce stope of thin wings in either subsonic or supersonie
flow ix the same when the direetion of flight of the wing is
veversed. Tt is also shown that the wing reversal does not ehange
the thickness drag, damping-in-roll  parameter €'y = or the
damping-in-pilch parameler €',

INTRODUCTION

The present report makes use of and extends a paper by
Munk (reference 1) in which simple dynamic coneepts are
used to prove that the lift-curve slope and thickness drag of
supersonic airfoils with supersonie edges are the same when
the airfoil is flown in a reversed direetion.  This extension
of Munk's work provides a proof that the thickness drag,
lift-curve slope, damping in roll, and the damping-in-pitch
parameter (7, remain the sume when any airfoil or system
of airfoils is reversed in both subsonic and supersonic flow.
The theorem applies to cases in which the trailing-edge
velocities are finite; no restrictions are placed on plan form.

The reversibility theorem for drag was fivst obtained by
different methods by Von Karman (reference 2). Hayes has
treated the lifting ease for a restricted series of wing types
al supersonic speeds.  (See references 3 and +4.)  Tarmon
(reference 5) has extensively treated the stability derivatives
for a restricted group of plan forms at supersonic speeds.

PROOF

Under the assumptions of the lincarized potential-flow
theory, it becomes possible to obtain a great simplification
of subsonic and supersonic lifting-surface problems. The
use of the lincar equations of motion allows the boundary
conditions on a lifting surface to be satisfied on a plane near
the wing surface and permits the use of the superposition
principle.  Consider a set of Cartesian coordinates @,z in
which the z-axis is taken in the flight direction and the
—axis. in the vertical direction.  The boundary conditions
hecome a stipulation of the vertical-velocity distribution
over the projection of the wing surface on the xy-plane.  As
a result of this simplification, the effects of camber, twist.
angle of attack. and thickness may be treated separately.

For the complete comprehension of the analysis to follow,
it is necessary to understand the manner in which drag
ultimately appears in the tlow field. Two distinet forms of
drag may be found: one associated with a trailing vortex
system, the other with the production of waves. In the case

50387851

of a vortex wake, the drag shows up in the wake a great
distance downstream in the form of a pressure defeet which,
when integrated over a plane normal to the flight path,
This result is identieal with that of incom-
pressible flow. The deag produced by wave formation shows
up in the field as a combined momentum and pressure defeet;
of course, the thin-uirfoil theory predicts a wave drag only
at supersonic speeds. ITnoall cases, the total resistanes may
he obtained by integrating the momentum {ransport across
the sides of a box enclosing the wing. It is of ten conveniend
to place the sides of the box at infinity and allow the top and
This process

vields the deag.

bottom {o approach the plane of the wing.
vields for the drag

D=--2p fj%%dy(h: (1)

where pis the stream density, ¢ is the disturbance potential,
and the integration taken over both upper and lower sides
extends to infinity.  Note that the drag is independent of
the main stream direction but depends only on the disturb-
ance potentinl ¢, In the usual problems, singularities occur
on the wing leading edges and care must be taken with the
integration if the quantities in the integrand of equation (1)
are evaluated on the wy-plane.  Negleet ol the singular
hehavior leads to the omission of the leading-edge suction
forees,  For additional information on the fundamentals of
the linear theory, see references 2 and 6.

Thickness drag. Consider a svmmetrical airfoil at zero
angle of attack.  The potential of the flow may be expressed
as

b=Vt @)

where V7 is the stream velocity and ¢, is the disturbance
potential which satisfies the boundary condition

L Od’!) Az )
\'(().: s du ()

dz. S . -
where s the airfoil surface slope.  In addition, the poten-
r ‘

tinl must satisfv the usual conditions for physical flows such
as the vanishing of the perturbation veloeities at infinity for
subsonie flow and undisturbed flow ahead of the foremost
Mach waves in supersonie flow.  Assume the main flow
direction to be reversed.  The new potential would result:

to=—Vito, 4)
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where ¢ satisties the condition

i Ozb:) o (/_:_' .
\—'(O: o t5)

By superposing the solutions &y and ¢ a new potential is

formed:
Dy - ha ()

Suclya step is quite permissible inasmuch as the differential
cquation governing the flows is independent of the sign ol the

. . . by’
stream velocity.  The vertieal velocity ( 5- > becomes
N i [}

zero and thus a boundary condition for a plate of zero
thickness is satisfied.  Inasmuch as there are no infinite
induced veloeitios at the edges of the resultant wing and
therefore no edge forees, the flat plate can produce no changes
in stream momentum: henee, the momentum or pressure
defects n great distance downstream in the flow must be
equal to those upstream.  Any momentum or pressure de-
feets at infinity upstream arise from the reversed airfoil
potential, and the momentum or pressure defects - great
distance downstrenm arise only from the original airfoil

potential.  Since the drag of cachairfoil is equal to the mo-

“mentum or pressure deleets inits wake, the drag ol the two

wirfoils must neeessarily be equal. Tt is well known that the
drag of syvmmetrieal bodies in subsonic potential flow s
zoro: henee, the reversibility of drag is most pertinent to
supersonic flows.  The preceding proof and discussion fol-
lows essentinlly that of Munk (reference 1),

Lift-curve slope.—Inasmuch as the lift-curve slope of a
wing is independent of camber and twist, it is suflicient to
treat o flat-plate airfoil at an angle of attack «. Unlike the
symmetrical-drag ease, however, a certain indeterminacy
exists in the potential whenever subsonie tratling edges are
Subsonic edges oceur when the component of
In order to

present.
stream veloeity normal to the edge is subsonic.
remove this indeterminacy it is necessary to speeify the eireula-
tion. The use of the Kutta condition is an appropriate means
for this process beeause, in effeet, an additional boundary
condition is imposed.  This requirement, that the veloeities
at the trailing edge be finite, is indeed a physical condition
arising  from the fact that the boundary layer. always
present at trailing edges, would separate from the edge rather
than accommodate the high adverse accelerations around the
edge. Tt is exactly the Kutta condition which leads to unique
solutions and which is necessary to prove the reversibility
theoren.

The potential of the fat-plate airfoil may now be written:

Py= Vo (7)
where ¢ ix the disturbance potential satisfying the conditions

that the trailing-edge veloeities are finite and the boundary
condition

o4,

o T« (3)

1
P
The drag of the wing can be written:

D= Lia—1" )
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where 7 0s the component parallel to the surlace ol the re-
sultant foree, usually known in linear theory as the leading-
cdge suction foree, and L ois the It foree.

As in the deag ease, the reversed-stream veloeity produces
the potential

b= — Voo, (1)

where ¢, satislies the Kuatta condition and the boundary
condition

| 2
‘— Oadi-‘(l (ll)
The dimg s now
Dy=Lia— I, (12)

The superposition ol the potential ¢, on @ results inthe fow
over a lat plate of zero angle of attack.

The drag ol the combined atrloils is now

Dy=1F,—I (13)
provided the superposition has not changed the leading-edge
suction forees 7 and F.. These suction forces have been
shown (references 7 to 9) to be dependent on the asymptotic
distribution ol vorticity as the edge is approached; suction
forees are obtained only when the vortex strength approaches
infinity at the edge, this condition corresponding to infinite
upwash velocity around the edge.  Inasmuch as the super-
position of a solution having finite-edge velocities does not
alter the asymptotic strength of the singularities at the edge,
it follows that the edge forees will be unchanged by the
superposition.

When a momentum balance in the stream is formed, the
upstream momentum and pressure defeets in the combimed-
airfoil differ from the downstream momentum and
pressure defeets by the dilference i the suetion forees 1.
The upstream momentum and pressure defeets are, however,
equal to 1)y, whereas those downstream are cqual to /).

Case

Therefore,

Di—1),= (14)
or from equations (9) and (12)
Lia=Lx (13)

The lifts L; and L, ave cqual and, therefore, the Lft-curve
slopes are equal. Obviously, the lift-curve slopes of cambered
and twisted wings ave also unchanged when the aicfoil is re-
versed. It s important to note that the drags are not equal
unless the suction forees are zero or cancel.

In reference 4, the conclusion is reached that the lift
theorem cannot be a general one: however, it appears that
this conclusion was deduced from an equation of msuflicient
ecenerality.  Ladeed, the analysis of the present report shows
the lift theorem to apply to all plan forms so long as the
Kutta condition is applied to subsonic trailing edges.

Damping in roll.. —The prool for the reversibility of damp-
ing in roll proceeds in the same manner as that for the lift.
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The rolling moment of the thin wing may be expressed as
follows:

L/ = j ApydsS (16)
SN

where Ap s the pressure difference between the upper arnd
lower surface and S is the wing area.

The drag of the linearly (wisted wing used to represent
the rolling flat plate s

]) == J ApradS—1F, (1)
Js

The drag may be expressed as a function of the rolling mo-
, P , o
ment inasmuch as « = 0 where pois the angular veloeity in

roll.  For the twisted wing,

M:%L#J\ (18)
The drag of the reversed airfoil is then

Dy=F L1y (19)

Superposing the disturbance potential of the reversed airfoil
again eancels the wing slopes, and the resulting momentum
change at the combined airfoils becomes

1)3:1"2_‘1”1 (20)

Istablishing the conservation of momentum in the flow, as
was done for the lifting ease, gives the result:

‘li Ll’:% Ly 20

Therefore, the rolling moment for the reversed airfoil is the
same as that of the unreversed airfoil. It follows then that
the rolling-momet t derivative (i, for any wing is unchanged
by reversal.

Steady pitching moment.—The pitching moment of a wing
undergoing a steady pitching velocity ¢ about the point
ro may be written

M= [ (r—rx)ApdS (22)
Js

where o is the reference point about which moments are

taken. The drag of the cambered-wing surface representing

the steady pitehing motion is
1):1 ApadS—1I (23)
JgN :
and the loeal angle of attack for such o wing is

r—
a=(q —‘fiio (24)

Henee, the deag may be expressed from equations (22) to (24)
as follows:

D= M= F (25)

Performing the superposition of reversed potentinl and origi-
nal potentials vields an airfoil of zero angle of attack; the
momen(um balance, as for the steady rolling case, caneels the
suction forees to leave:

%JL:$JA (26)

The pitehing moments of the two airfoils are the same and,
therefore, the damping-in-piteh parameter €, is unchanged

by a reversal of the wing.
DISCUSSION

Inasmuch as the analysis presented is unrestricted as to
plan form, it follows that any system of airfoils will obey
the reversibility theorem; this does not allow for the reversul
of the individual airfoils but only for the reversal of the
complete system.  Indeed, the same result holds for groups
of airfoils in different horizontal planes, provided the bound-
ary conditions for cach wing are satisfied in the plane of the
wing. Tt should be noticed that the pitching-moment
coellicients, lift coefficients due to pitching, and the constants

arising from camber such as az-y are not generally the

same when the wing is reversed.

LanaLey ArroNauTICAL LaBnoraronry,
NarroNaL Apvisorny CoMMITTEE FOR AERONAUTICS,
LancrLey Freno, Va., June 20, 1949.
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force .
- gpa.ra!lgl : Linear
N Sym- | 10-8X18 ... 18Sym-| Positive Designa- |Sym-| (compo-
Designation bol |5 ?“POl Designation | ") direction tion bol |nent along Angular
axis)
Longitudinal........ X X Rolling....... L Y—Z Roll......... ¢ 4 P
Lateral .. ... Y Y Pitching...... M Z—X Pitch........| -6 . v q
Normal.o.oooiieeenen Z Z Yawing....... N X—Y Yaw . cooone ¥ w r
Absolute cocflicients of moment ‘ Angle of set of control surface (relative to neutral
c _—_,_L_._. c. _‘_M 0= N posmlon), (Indicate surface by proper subscript.)
FTebS qeS q0S
(rolling) ( pltchul<r) (yaw m(r)

4. PROPELLER SYMBOLS

P

D Diameter P Power, absolute coefficient 0"=p_—n3 5

P Geometric pitch
p/D  Pitch ratio SR P %
V' Inflow velocity C, Specd-power coeflicient== P

V. Slipstream velocity n Efficiency

T Thrust, absolute coeflicient 0T=;-m’;rD : Revolutions per second, rps .
Q Effective helix angle=tan“(2 )
xR

Q Torque, absolute coefficient C{‘,—-~'§I~)—5

5. NUMERICAL RELATIONS

1 hp=76.04 kg-m/s=550 ft-Ib/sec 11b=0.4536 kg
1 metric horsepower==0.9863 hp 1 kg=2.2046 lb
1 mph=0.4470 mps 1 mi=1,609.35 m= 5,280 ft

1 mps=2.2369 mph 1 m=3.2808 ft




